3.156 \(\int \sin (e+f x) (a+b \tan ^2(e+f x))^p \, dx\)

Optimal. Leaf size=79 \[ -\frac{\cos (e+f x) \left (a+b \sec ^2(e+f x)-b\right )^p \left (\frac{b \sec ^2(e+f x)}{a-b}+1\right )^{-p} \text{Hypergeometric2F1}\left (-\frac{1}{2},-p,\frac{1}{2},-\frac{b \sec ^2(e+f x)}{a-b}\right )}{f} \]

[Out]

-((Cos[e + f*x]*Hypergeometric2F1[-1/2, -p, 1/2, -((b*Sec[e + f*x]^2)/(a - b))]*(a - b + b*Sec[e + f*x]^2)^p)/
(f*(1 + (b*Sec[e + f*x]^2)/(a - b))^p))

________________________________________________________________________________________

Rubi [A]  time = 0.0509318, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3664, 365, 364} \[ -\frac{\cos (e+f x) \left (a+b \sec ^2(e+f x)-b\right )^p \left (\frac{b \sec ^2(e+f x)}{a-b}+1\right )^{-p} \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};-\frac{b \sec ^2(e+f x)}{a-b}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

-((Cos[e + f*x]*Hypergeometric2F1[-1/2, -p, 1/2, -((b*Sec[e + f*x]^2)/(a - b))]*(a - b + b*Sec[e + f*x]^2)^p)/
(f*(1 + (b*Sec[e + f*x]^2)/(a - b))^p))

Rule 3664

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a - b + b*ff^2*x^2)^p)/x^(
m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \sin (e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a-b+b x^2\right )^p}{x^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{\left (\left (a-b+b \sec ^2(e+f x)\right )^p \left (1+\frac{b \sec ^2(e+f x)}{a-b}\right )^{-p}\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{b x^2}{a-b}\right )^p}{x^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};-\frac{b \sec ^2(e+f x)}{a-b}\right ) \left (a-b+b \sec ^2(e+f x)\right )^p \left (1+\frac{b \sec ^2(e+f x)}{a-b}\right )^{-p}}{f}\\ \end{align*}

Mathematica [A]  time = 0.847632, size = 80, normalized size = 1.01 \[ -\frac{\cos (e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac{a+b \sec ^2(e+f x)-b}{a-b}\right )^{-p} \text{Hypergeometric2F1}\left (-\frac{1}{2},-p,\frac{1}{2},-\frac{b \sec ^2(e+f x)}{a-b}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

-((Cos[e + f*x]*Hypergeometric2F1[-1/2, -p, 1/2, -((b*Sec[e + f*x]^2)/(a - b))]*(a + b*Tan[e + f*x]^2)^p)/(f*(
(a - b + b*Sec[e + f*x]^2)/(a - b))^p))

________________________________________________________________________________________

Maple [F]  time = 0.173, size = 0, normalized size = 0. \begin{align*} \int \sin \left ( fx+e \right ) \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)*(a+b*tan(f*x+e)^2)^p,x)

[Out]

int(sin(f*x+e)*(a+b*tan(f*x+e)^2)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \sin \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)*(a+b*tan(f*x+e)^2)^p,x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^p*sin(f*x + e), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \sin \left (f x + e\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)*(a+b*tan(f*x+e)^2)^p,x, algorithm="fricas")

[Out]

integral((b*tan(f*x + e)^2 + a)^p*sin(f*x + e), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)*(a+b*tan(f*x+e)**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \sin \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)*(a+b*tan(f*x+e)^2)^p,x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^p*sin(f*x + e), x)